岳曜廷 |
学历:博士研究生 | 职称:副教授 |
学科专长:医学图像处理、医学超声成像 |
所属学科方向(团队):智能信息处理 | 办公室:T331 |
联系电话: | Email:yaotingyue@shu.edu.cn |
个人简介
岳曜廷:2022年博士毕业于复旦大学,随后在复旦大学生物医学工程流动站开展博士后研究,2025年1月进入上海大学工作。研究兴趣包括深度学习、机器学习、医学图像处理、高时空分辨超声成像。主持国家自然科学基金青年项目1项、中国博士后科学基金面上项目1项、复旦大学“超级博士后”激励计划。目前已发表文章近20篇,申请发明专利1项。
研究方向
基于神经网络模型的医学图像处理及超声成像方法研究
科研项目
[1] 国家自然科学基金青年项目,多层复杂生物组织的超声高分辨成像方法研究,主持
[2] 中国博士后科学基金面上项目,异质生物组织的超声高时空分辨成像及信息挖掘方法研究,主持
[3] 复旦大学“超级博士后”激励计划,基于自监督学习的超声高时空分辨成像方法研究,主持
[4] 国家自然科学基金重点项目,多层复杂生物组织中超声传播和调控新机理及其信息深度挖掘方法研究,参与
[5] 国家自然科学基金面上项目,基于非线性光声光谱自适应解耦的骨肿瘤智能评估方法研究,参与
[6] 国家自然科学基金面上项目,临床数据交叉设计下的复杂等效性评价及统计推断,参与
[7] 国家自然科学基金面上项目,基于PCNN脉冲时间编码的基因表达谱特征提取及应用研究,参与
主要学术论文
[1] Yaoting Yue, Nan Li, Gaobo Zhang, Wenyu Xing, Zhibin Zhu, Xin Liu, Shaoli Song, Dean Ta. A Transformer-Guided Cross-Modality Adaptive Feature Fusion Framework for Esophageal Gross Tumor Volume Segmentation, Computer Methods and Programs in Biomedicine, 2024, (251)108216: 1-13.
[2] Yaoting Yue, Yijun Xu, Chen Jiang, Xin Liu, Dean Ta. High Spatiotemporal Resolution Ultrasound Imaging Based on Single Plane Wave. IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (IEEE UFFC-JS), 2024.
[3] Yaoting Yue, Yijun Xu, Xin Liu, Dean Ta. High-Quality Ultrasound Imaging through Radio-Frequency Signal Transformation. International Symposium on Ultrasonic Characterization of Bone (ISUCB), 2024.
[4] Gaobo Zhang, Wenting Gu, Yaoting Yue, Meng-Xing Tang, Jianwen Luo, Xin Liu, Dean Ta. ULM-MbCNRT: In vivo Ultrafast Ultrasound Localization Microscopy by Combining Multi-branch CNN and Recursive Transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2024, 3388102: 1-16.
[5] Yaoting Yue, Nan Li, Gaobo Zhang, Zhibin Zhu, Xin Liu, Shaoli Song, Dean Ta. Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet. Computer Methods and Programs in Biomedicine. 2023, 229(2023)107266:1-10.
[6] Yaoting Yue, Nan Li, Wenyu Xing, Gaobo Zhang, Husnain Shahid, Xin Liu, Zhibin Zhu, Shaoli Song, Dean Ta. Condition control training-based ConVMLP-ResU-Net for semantic segmentation of esophageal cancer in 18F-FDG PET/CT images. Physical and Engineering Sciences in Medicine. 2023, (2023)46:1643-1658.
[7] Yaoting Yue, Nan Li, Husnain Shahid, Dongsheng Bi, Xin Liu, Shaoli Song, Dean Ta. Gross tumor volume definition and comparative assessment for esophageal squamous cell carcinoma from 3D 18F-FDG PET/CT by deep learning-based method. Frontiers in Oncology, 2022, 12(799207):1-11.
[8] Wenyu Xing, Zhibin Zhu, Dongni Hou, Yaoting Yue, Fei Dai, Yifang Li, Lin Tong, Yuanlin Song, Dean Ta. CM-SegNet: A deep learning-based automatic segmentation approach for medical images by combining convolution and multilayer perceptron. Computers in Biology and Medicine, 2022, 147:105797.
[9] Husnain Shahid, Adanan Khalid, Yaoting Yue, Xin Liu, Dean Ta. Feasibility of generative adversarial network for artifact removal in experimental photoacoustic imaging. Ultrasound in Medicine and Biology, 2022, 48(8):1628-1643.
[10] GaoboZhang, Yaoting Yue, Fei Dai, XinLiu, Dean Ta. Transformer for Ultrafast Ultrasound Localization Microscopy. IEEE International Ultrasonics Symposium (IUS), 2022.
[11] Husnain Shahid, Yaoting Yue, Adanan Khalid, Xin Liu, Dean Ta. Batch ReNormalization Accumulated Residual U-Network for Artifacts Removal in Photoacoustic Imaging. IEEE International Ultrasonics Symposium (IUS), 2021.
[12] Shunfang Wang, Zicheng Cao, Mingyuan Li, Yaoting Yue. G-DipC: An Improved Feature Representation Method for Short Sequence to Predict the Type of Cargo in Cell-Penetrating Peptides. IEEE/ACM Transactions on computational biology and bioinformatics, 2020, 17(3):739-747.
[13] Shunfang Wang#, Yaoting Yue#. Protein Subnuclear Localization Based on a New Effective Representation and Intelligent Kernel Linear Discriminant Analysis by Dichotomous Greedy Genetic Algorithm. 2018. Plos One, 13(4):1-20. (#共同一作)
专利
他得安,岳曜廷,宋少莉。一种基于PET/CT图像跨模态特征融合的食管癌肿瘤靶区分割方法,发明专利,CN202310109050.2