岳曜廷

学历:博士研究生

职称:副教授

学科专长:深度学习、图像处理、人工智能辅助诊疗、高时空分辨超声成像

所属学科方向(团队):智能信息处理

办公室:T331

联系电话:

Emailyaotingyue@shu.edu.cn

个人简介:

岳曜廷:2022年12月博士毕业于复旦大学,随后在复旦大学开展为期2年的博士后研究,2025年1月至今任上海大学通信与信息工程学院副教授。研究兴趣包括深度学习、机器学习、图像处理、人工智能辅助诊疗、高时空分辨超声成像。主持国家自然科学基金青年项目1项、中国博士后科学基金面上项目1项、博士后期间入选复旦大学“超级博士后”激励资助计划。目前已发表文章近20篇,申请发明专利1项。

研究方向:

深度学习、图像处理、人工智能辅助诊疗、高时空分辨超声成像

本科生教学:

目前担任《计算机网络》、《面向对象程序设计》课程助教

研究生培养:

硕士研究生导师

主持或参与的资助计划及科研项目

[1] 主持,国家自然科学基金青年项目,2024.1-2026.12

[2] 主持,中国博士后科学基金面上项目,2023.11-2024.12

[3] 主持,复旦大学“超级博士后”激励资助计划

[4] 参与,国家自然科学基金重点项目,2021.1-2025.12

[5] 参与,国家自然科学基金面上项目,2024.1-2027.12

主要学术论文:

[1] Yaoting Yue, Nan Li, Gaobo Zhang, Wenyu Xing, Zhibin Zhu, Xin Liu, Shaoli Song, Dean Ta. A Transformer-Guided Cross-Modality Adaptive Feature Fusion Framework for Esophageal Gross Tumor Volume Segmentation, Computer Methods and Programs in Biomedicine, 2024, (251)108216: 1-13.

[2] Yaoting Yue, Yijun Xu, Chen Jiang, Xin Liu, Dean Ta. High Spatiotemporal Resolution Ultrasound Imaging Based on Single Plane Wave. IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (IEEE UFFC-JS), 2024.

[3] Yaoting Yue, Yijun Xu, Xin Liu, Dean Ta. High-Quality Ultrasound Imaging through Radio-Frequency Signal Transformation. International Symposium on Ultrasonic Characterization of Bone (ISUCB), 2024.

[4] Gaobo Zhang, Wenting Gu, Yaoting Yue, Meng-Xing Tang, Jianwen Luo, Xin Liu, Dean Ta. ULM-MbCNRT: In vivo Ultrafast Ultrasound Localization Microscopy by Combining Multi-branch CNN and Recursive Transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2024, 3388102: 1-16.

[5] Yaoting Yue, Nan Li, Gaobo Zhang, Zhibin Zhu, Xin Liu, Shaoli Song, Dean Ta. Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet. Computer Methods and Programs in Biomedicine. 2023, 229(2023)107266:1-10.

[6] Yaoting Yue, Nan Li, Wenyu Xing, Gaobo Zhang, Husnain Shahid, Xin Liu, Zhibin Zhu, Shaoli Song, Dean Ta. Condition control training-based ConVMLP-ResU-Net for semantic segmentation of esophageal cancer in 18F-FDG PET/CT images. Physical and Engineering Sciences in Medicine. 2023, (2023)46:1643-1658.

[7] Yaoting Yue, Nan Li, Husnain Shahid, Dongsheng Bi, Xin Liu, Shaoli Song, Dean Ta. Gross tumor volume definition and comparative assessment for esophageal squamous cell carcinoma from 3D 18F-FDG PET/CT by deep learning-based method. Frontiers in Oncology, 2022, 12(799207):1-11.

[8] Wenyu Xing, Zhibin Zhu, Dongni Hou, Yaoting Yue, Fei Dai, Yifang Li, Lin Tong, Yuanlin Song, Dean Ta. CM-SegNet: A deep learning-based automatic segmentation approach for medical images by combining convolution and multilayer perceptron. Computers in Biology and Medicine, 2022, 147:105797.

[9] Husnain Shahid, Adanan Khalid, Yaoting Yue, Xin Liu, Dean Ta. Feasibility of generative adversarial network for artifact removal in experimental photoacoustic imaging. Ultrasound in Medicine and Biology, 2022, 48(8):1628-1643.

[10] GaoboZhang, Yaoting Yue, Fei Dai, XinLiu, Dean Ta. Transformer for Ultrafast Ultrasound Localization Microscopy. IEEE International Ultrasonics Symposium (IUS), 2022.

[11] Husnain Shahid, Yaoting Yue, Adanan Khalid, Xin Liu, Dean Ta. Batch ReNormalization Accumulated Residual U-Network for Artifacts Removal in Photoacoustic Imaging. IEEE International Ultrasonics Symposium (IUS), 2021.

[12] Shunfang Wang, Zicheng Cao, Mingyuan Li, Yaoting Yue. G-DipC: An Improved Feature Representation Method for Short Sequence to Predict the Type of Cargo in Cell-Penetrating Peptides. IEEE/ACM Transactions on computational biology and bioinformatics, 2020, 17(3):739-747.

[13] Shunfang Wang#, Yaoting Yue#. Protein Subnuclear Localization Based on a New Effective Representation and Intelligent Kernel Linear Discriminant Analysis by Dichotomous Greedy Genetic Algorithm. 2018. Plos One, 13(4):1-20. (#共同一作)

专利:

他得安,岳曜廷,宋少莉。一种基于PET/CT图像跨模态特征融合的食管癌肿瘤靶区分割方法,发明专利,CN202310109050.2

 
     

版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们